Jeśli nie krzem, to co?

W ciągu najbliższych kilku lat może zakończyć się produkcja takich procesorów, jakie dziś znamy. Przyzwyczailiśmy się, że ich ciągły rozwój prowadzi do powstawania coraz lepszych desktopów, notebooków, tabletów i smartfonów, jednak na przeszkodzie stają mu nieubłagane prawa fizyki.

Mimo to punktem odniesienia dla branży IT wciąż pozostaje prawo Moore’a (przynajmniej na razie). Pół wieku temu współzałożyciel Intela prognozował, że liczba tranzystorów w mikroprocesorze będzie podwajała się co 24 miesiące. Największemu z producentów udaje się jeszcze realizować to założenie –

co dwa lata zmniejsza on tranzystory. Przykładowo współczesny procesor Haswell składa się z ok. 1,4 mld tranzystorów, podczas gdy 10 lat temu w układzie Pentium 4 mieściło się ich zaledwie 100 milionów. Konkurenci Intela – Samsung, TSMC czy Globalfoundries – na tyle, na ile potrafią, starają się dotrzymywać mu kroku. Im więcej tranzystorów mieści się w układzie o ograniczonej objętości, tym więcej ciepła one emitują. Z tego względu pojawia się tzw. ciemny krzem: podczas pracy mikroprocesora nie mogą być jednocześnie wykorzystywane wszystkie jego elementy.

Jak dowodzą amerykańscy badacze, przy niezmienionej technologii produkcji w 2018 roku nieaktywna może pozostawać nawet połowa tranzystorów tworzących przeciętny procesor – inaczej układ po prostu się spali. Już od dawna w miejscu stoi wyścig, którego celem było uzyskiwanie coraz większych częstotliwości taktowania – również w tym przypadku barierę stanowi temperatura. Zamiast przyspieszać taktowanie, producenci zwiększają zatem liczbę rdzeni i upychają więcej tranzystorów w pamięci podręcznej.

W najbliższych latach będą pojawiać się jednak coraz większe przeszkody, które w końcu uniemożliwią dalsze zmniejszanie tranzystorów przy wykorzystaniu dotychczasowej technologii. Dla utrzymania tempa rozwoju mikroprocesorów stanie się więc konieczne wprowadzenie nowych metod – inaczej prawo Moore’a trzeba będzie odesłać do lamusa. W artykule przedstawiamy niektóre pomysły inżynierów.

Nowe pomysły na tranzystory

Producent mikroprocesorów potrafiący wytwarzać najmniejsze tranzystory ma potężną przewagę: może oferować szybsze procesory, bardziej energooszczędne urządzenia i pojemniejsze dyski SSD niż którykolwiek z konkurentów. Zmniejszając tranzystory, producenci mikroprocesorów dotarli już do rzędu wielkości, który oprócz nich interesuje przede wszystkim mikrobiologów: wirus grypy mierzy od 80 do 120 nanometrów, a tranzystor nowoczesnego CPU – od 60 do 90 nm.

Tranzystor przełącza się po przyłożeniu napięcia do bramki – wów- czas elektrony mogą płynąć od źródła do drenu. Warstwa zubożona blokuje ich przepływ, kiedy tranzystor jest wyłączony. Przy procesie technologicznym mniejszym niż 20 nm staje się ona zbyt cienka i powstają prądy upływu.

Tranzystor przełącza się po przyłożeniu napięcia do bramki – wówczas elektrony mogą płynąć od źródła do drenu. Warstwa zubożona blokuje ich przepływ, kiedy tranzystor jest wyłączony. Przy procesie technologicznym mniejszym niż 20 nm staje się ona zbyt cienka i powstają prądy upływu.

Tranzystory są zbudowane z półprzewodzącego krzemu, w którego strukturę wpleciono atomy innych pierwiastków. Ta domieszka pozwala modyfikować przewodność krzemu: półprzewodnik typu „n” tworzący źródło i dren zawiera np. atomy fosforu, mające więcej elektronów walencyjnych niż atomy krzemu i łatwiej uwalniające je pod wpływem napięcia. Podłoże tworzy natomiast materiał z domieszką typu „p”, na przykład atomów boru, które mogą przyjmować wolne elektrony. Po przyłożeniu napięcia do bramki, w kanale między źródłem a drenem zaczyna płynąć prąd – tranzystor jest włączony. Kiedy zmniejszy się taki układ, a w szczególności długość bramki, może on działać efektywniej, jednak pojawiają się problemy: warstwa zubożona z niedomieszkowanego półprzewodnika, rozdzielająca obszary materiału z domieszką typu „p” i „n” staje się coraz cieńsza i bardziej przepuszczalna, przez co elektrony bez przeszkód przepływają ze źródła i drenu do podłoża. Jednocześnie warstwa ta zajmuje relatywnie coraz większą część kanału, co ułatwia niechciany przepływ elektronów ze źródła do drenu. Te tzw. prądy upływu odpowiadają już za prawie 40 proc. zużycia energii przez procesory.

Z każdą zmianą technologii produkcji tranzystory maleją. Od 2011 ro- ku oznaczenia procesów technologicznych są jednak mniejsze niż faktyczne wymiary tranzystorów. W rzeczywistości decydująca dla wydajności układów długość bramki maleje wolniej niż na papierze, co świadczy o kryzysie wśród producentów mikroprocesorów.

Z każdą zmianą technologii produkcji tranzystory maleją. Od 2011 roku oznaczenia procesów technologicznych są jednak mniejsze niż faktyczne wymiary tranzystorów. W rzeczywistości decydująca dla wydajności układów długość bramki maleje wolniej niż na papierze, co świadczy o kryzysie wśród producentów mikroprocesorów.

Nowe typy procesorów

Na razie brak jest mechanizmu naprawiającego uszkodzone tranzystory, ale badacze z Beckman Institute na Uniwersytecie Illinois opracowali mechanizm samoleczenia ścieżek przewodzących chipów za pomocą mikrokapsułek. Kapsułki o wielkości dziesięciu mikrometrów w polimerowych powłokach zawierają płynny w temperaturze pokojowej (od 16 oC) metaliczny stop galu i indu. Kapsułki nakładane są na ścieżkę w warstwie z żywicy epoksydowej. Kiedy powstanie pęknięcie, dojdzie do otwarcia znajdującej się ponad nią mikrokapsułki, płynny stop wsunie się w szczelinę i ją wypełni. Komórki flash w konsumenckich dyskach SSD i smartfonach można zapisywać ok. 10 000 razy, później ich żywot dobiega końca. Słabym punktem komórki flash jest bramka pływająca, czyli warstwa, w której komórka przechowuje elektrony. Aby ładunek elektryczny po prostu nie zniknął, floating gate otoczona jest warstwą tlenku.

Tranzystory FinFET trzymają prądy upływu w ryzach aż do procesu technologicznego 10 nm. Elementy są oddzielone od podłoża war- stwą izolatora, a bramka może lepiej kontrolować kanał. Wpływ bramki na kanał jest jeszcze większy w przypadku tranzystorów na- noprzewodowych (poniżej 10 nm).

Tranzystory FinFET trzymają prądy upływu w ryzach aż do procesu technologicznego 10 nm. Elementy są oddzielone od podłoża warstwą izolatora, a bramka może lepiej kontrolować kanał. Wpływ bramki na kanał jest jeszcze większy w przypadku tranzystorów nanoprzewodowych (poniżej 10 nm).

Za każdym razem, kiedy przyłożone napięcie wprowadza albo wyprowadza elektrony przez bramkę, ubywa również część warstwy tlenku. Po pewnym czasie staje się ona zbyt cienka i bramka nie działa już prawidłowo. Od dłuższego czasu wiadomo, że ubytki w warstwie tlenku naprawia wysoka temperatura. W tym celu należałoby przez dłuższy czas rozgrzać SSD do 250oC – licząc się przy tym z możliwością jego zniszczenia. Firma Marconix zamiast tego wbudowała specjalne podgrzewacze bezpośrednio do każdej komórki flash. Wykorzystując krótki impuls elektryczny, rozgrzewają one do 800oC znajdujące się pod nimi bramki i regenerują warstwę tlenku.

Metale zamiast krzemu

Architektura FinFET rozwiązuje wiele problemów wynikających ze zmniejszania tranzystorów. Mogą one być zasilane prądem o niższym napięciu, co przekłada się na mniejsze zużycie energii, a jednocześnie przełączać się z większą szybkością. Redukcja komponentów funkcjonalnych (źródła, drenu i kanału) do wąskiej wystającej „płetwy” powoduje jednak nowe komplikacje, z którymi producenci procesorów będą musieli zmierzyć się najpóźniej przy wprowadzaniu procesu technologicznego 10 nm. Od 2009 roku w konstrukcji komponentów funkcjonalnych tranzystorów wykorzystuje się „rozciągnięty” krzem. Rozciąganie należy rozumieć dosłownie: w strukturę krzemu zostają wprowadzone atomy germanu, przez co dystans między poszczególnymi atomami ulega zwiększeniu. Na warstwę krzemowo-germanową (SiGe) nakłada się warstwę zwykłego krzemu. Obie warstwy łączą się, tworząc regularną strukturę krystaliczną, przy czym wielkość odstępów między atomami zostaje dostosowana do struktury warstwy SiGe. Zwiększenie tych odstępów poprawia przewodność materiału – elektrony przemieszczają się przez przełączony tranzystor nawet o 70 proc. szybciej, niż gdyby był on wykonany ze zwykłego krzemu.

W małych tranzystorach FinFET „płetwa” jest jednak tak cienka, że składa się z zaledwie kilku warstw atomów. Rozciąganie krzemu staje się coraz trudniejsze, a przy procesie technologicznym 10 nm okaże się już niemożliwe. Potencjał krzemu jako głównego materiału półprzewodnikowego zostanie wyczerpany. Odsiecz nadejdzie w postaci nowych materiałów, które przynajmniej częściowo zastąpią krzem. Za idealną podstawę do budowy elementów z domieszką typu „p” uchodzi german, zajmujący w układzie okresowym miejsce bezpośrednio poniżej krzemu i mogący zastąpić go bez większych problemów. Struktura krystaliczna germanu jest naturalnie rozciągnięta, a jego przewodność czterokrotnie przewyższa przewodność krzemu. Elementy tranzystorów wymagające domieszkowania typu „n” mogłyby być wykonane z mieszanki indu, galu i arsenu (InGaAs), mającej sześciokrotnie wyższą przewodność.

nżynierowie z Interuniversity Microelectronics Centre w Leu- ven zastąpili krzemowy kanał stopem indu, galu i arsenu (In- GaAs) o znacznie wyższej prze- wodności. Ta technologia ma zostać wprowadzona w 7-nano- metrowych tranzystorach Fin- FET w 2017 roku. Ilustracja przedstawia przekrój kanału.

Inżynierowie z Interuniversity Microelectronics Centre w Leuven zastąpili krzemowy kanał stopem indu, galu i arsenu (In-GaAs) o znacznie wyższej przewodności. Ta technologia ma zostać wprowadzona w 7-nanometrowych tranzystorach Fin- FET w 2017 roku. Ilustracja przedstawia przekrój kanału.

Elementy z pojedynczej warstwy atomów

Po 2020 roku, kiedy na horyzoncie ukaże się proces produkcyjny 5 nm, pojawi się zapotrzebowanie na jeszcze mniejsze struktury o wysokiej przewodności elektrycznej. Takie warunki mogą spełnić nanowarstwy 2D, czyli materiały złożone z pojedynczej warstwy atomów (tzw. monowarstwy). Obecnie przedmiotem intensywnych badań jest grafen, czyli siatka atomów węgla. Materiały monowarstwowe nie zastąpią krzemu od razu – początkowo będą tylko jego uzupełnieniem. Najpierw trzeba jednak zapanować nad ich przewodnością, a jest to niezbędne, by można było wykorzystać je jako półprzewodniki. Tranzystor z czystego grafenu byłby włączony praktycznie przez cały czas, więc zużywałby mnóstwo prądu. Materiały monowarstwowe pozwoliłyby za to uniknąć innego kłopotu związanego z miniaturyzacją tranzystorów: obecnie przełączają się one tak prędko, że miedziane obwody nie są w stanie wystarczająco szybko transportować do nich ładunków elektrycznych. Naukowcom z japońskiego Narodowego Instytutu Zaawansowanych Nauk Stosowanych i Technologii udało się znaleźć rozwiązanie: miedź zastąpiono grafenem o znacznie wyższej przewodności.

Droga do trzeciego wymiaru

Niemal wszyscy liczący się producenci projektują procesory 3D, w których układy obliczeniowe współpracowałyby z pozostałymi podzespołami bez znaczących opóźnień. Przykładowo na warstwie elementów procesora można umieścić warstwę pamięci RAM, a wyżej – warstwę pamięci flash. Największy niezależny wytwórca układów scalonych – tajwańskie TSMC – ma wprowadzić trójwymiarową integrację elementów procesorów 16-nanometrowych. Być może już w 2016 trafią one do topowych smartfonów: prawdopodobnym kandydatem jest iPhone 7, gdyż Apple właśnie rozpoczął współpracę z TSMC. Trójwymiarowa struktura zostanie zbudowana z wykorzystaniem połączeń TSV (Through-Silicon Via): w krzemowych waflach zostaną nawiercone pojedyncze otwory o średnicy do 10 μm, do których zostanie wstrzyknięty materiał przewodzący. W ten sposób przewodnik połączy ułożone warstwowo wafle tworzące procesor 3D.

Technologia TSV jest jednak tylko rozwiązaniem przejściowym na drodze do monolitycznych procesorów 3D – w tym przypadku cały układ będzie złożony z pojedynczego bloku materiału, w którym warstwy krzemu zawierające tranzystory będą ze sobą bezpośrednio połączone obwodami o grubości około 100 nm. Jedynie do produkcji najniższej warstwy zostanie wykorzystany typowy wafel krzemowy. Kolejne warstwy, zawierające tranzystory i ścieżki przewodzące, będą nadrukowywane bezpośrednio na niej. Ponieważ warstwy będą ułożone bliżej siebie, takie rozwiązanie pozwoli zwiększyć szybkość transmisji danych i obniżyć zużycie energii w porównaniu z technologią TSV.

Struktury 3D w dyskach SSD i HDD

Komórki pamięci flash stosowane w dyskach SSD przypominają tranzystory logiczne – różnią się od nich głównie obecnością tzw. bramki swobodnej. Znajduje się ona pomiędzy kanałem a bramką i służy jako swego rodzaju magazyn elektronów. Komórki pamięci obecnie produkowanych dysków SSD mają szerokość poniżej 20 nm, przez co narażone są na podobne problemy związane z miniaturyzacją jak tranzystory mikroprocesorów. Mała odległość między komórkami sprawia, że zapisane w nich ładunki powodują odchylenia ich stanów. Dalsze zmniejszanie komórek pamięci flash (tak, że odległości między nimi skurczą się do 10 nm), spowoduje, iż kontroler nie będzie w stanie prawidłowo odczytywać zapisanych w nich wartości. Z tego względu producenci pamięci rezygnują z miniaturyzacji i zamiast tego modyfikują architekturę.

Pamięć V-NAND w dyskach SSD Samsunga składa się z komórek ułożonych w 24 warstwach. Ich ładunek elektryczny jest zapisywany w warstwie azotku krzemu pomiędzy bramką a kanałem. Taka kon- strukcja zwiększa gęstość danych i dziesięciokrotnie wydłuża żywotność komórek pamięci.

Pamięć V-NAND w dyskach SSD Samsunga składa się z komórek ułożonych w 24 warstwach. Ich ładunek elektryczny jest zapisywany w warstwie azotku krzemu pomiędzy bramką a kanałem. Taka kon- strukcja zwiększa gęstość danych i dziesięciokrotnie wydłuża żywotność komórek pamięci.

Komórki mają być układane warstwowo, tworząc kolumny, z których będzie składał się nośnik. Konstrukcja komórek zostanie uproszczona, tak jak w pamięci V-NAND zaprojektowanej przez Samsunga, a dodatkowo ich żywotność wydłuży się z 3000 aż do 35 000 cykli zapisu/odczytu. Koreańczycy planują, że do 2017 uda im się zwiększyć gęstość danych pamięci V-NAND stosowanej w dyskach SSD prawie dziesięciokrotnie – dzisiejsze układy o pojemności 128 Gb urosną do 1 Tb. Architektury 3D sprawdzą się również w przypadku dysków magnetycznych (patrz obok), których gęstość danych przy zachowaniu klasycznej konstrukcji również osiągnęła swoje maksimum. Liczby spolaryzowanych magnetycznie cząstek reprezentujących pojedynczy bit nie da się już zmniejszyć, gdyż sygnał byłby zbyt słaby, aby głowica mogła go odczytać.

0
Zamknij

Choć staramy się je ograniczać, wykorzystujemy mechanizmy takie jak ciasteczka, które pozwalają naszym partnerom na śledzenie Twojego zachowania w sieci. Dowiedz się więcej.