Szczególnie trudnym wyzwaniem jest pomiar czasu w świecie obserwowanym w skali kwantowej, gdzie ustalenie punktu początkowego i końcowego jakiegoś zdarzenia wcale nie jest takie proste, bowiem punkty te są bardzo umowne i zamglone. Tutaj zegar atomowy wiele nie pomoże.
Zespół naukowców z Uniwersytetu w Uppsali postanowił przyjrzeć się dokładniej owej mgle kwantowej, szukając nowego sposobu pomiaru czasu, który — co może się wydawać niewykonalne — nie wymaga precyzyjnego ustalenia początkowego punktu pomiaru.
Czytaj także: To nie jest zwykła kamera. Zaawansowany sprzęt od NIST rejestruje pojedynczy foton
W ramach swojego projektu badawczego naukowcy skupili się na tzw. atomach rydbergowskich, które posiadają w swoim wnętrzu elektrony na niezwykle wysokich stanach energetycznych, czyli krążące na bardzo rozległych orbitach wokół jądra atomowego.
Atomy tego typu zazwyczaj produkowane są za pomocą laserów, które podnoszą stan energetyczny ich elektronów. Okazuje się jednak, że w przypadku takich elektronów można wykorzystać jeszcze jeden laser, którego zadaniem będzie obserwowanie zmian położenia tychże wzbudzonych elektronów. W ten sposób właśnie możliwy jest pomiar upływu czasu, np. w urządzeniach elektronicznych, w których wymagany jest niezwykle precyzyjny pomiar czasu.
Fakt, iż naukowcy wiedzą całkiem dużo o tym, jak elektrony poruszają się wokół jądra atomowego, gdy znajdują się w stanie Rydberga sprawia, że pomiary tego typu mogą przyczynić się do rozwoju nowych komponentów komputerów kwantowych.
W swojej pracy naukowcy testowali pakiety fal Rydberga w całej palecie eksperymentów, których wyniki wskazują na to, że są one wystarczająco niezawodne, aby można było je wykorzystać do znakowania czasu.
Testując nowy sposób pomiaru czasu, naukowcy wykonywali pomiary atomów helu wzbudzanych laserem, a następnie porównywali wyniki tych pomiarów z przewidywaniami teoretycznymi. W ten sposób udawało się ustalić, które etapy ewolucji atomów rydbergowskich występują w których punktach czasu.
Czytaj także: Po raz pierwszy w historii udało się w ten sposób kontrolować jądra toru. Jak naukowcy tego dokonali?
Efekt? W przeciwieństwie do standardowego pomiaru czasu, w którym trzeba zdefiniować punkt startowy pomiaru, w przypadku atomów rydbergowskich wystarczy zidentyfikować strukturę interferencyjną pakietów fal, aby ustalić, ile minęło czasu.
Autorzy opracowania wskazują, że pomiar czasu w ten nowatorski sposób umożliwia pomiary zdarzeń naprawdę ulotnych, które mogą trwać nawet zaledwie 1,7 bilionowej części sekundy.
Co ciekawe, to jeszcze nie są granice tej obiecującej techniki pomiarowej. Naukowcy wskazują bowiem, iż w przyszłości będą starali się zastąpić atomy helu atomami innych pierwiastków, a jednocześnie testować lasery o innych częstotliwościach. W ten sposób można będzie poszerzyć katalog znaczników czasu, co może jeszcze zwiększyć precyzję pomiarową.